Dysrhythmias

LUCENT NCLEX REVIEWS

Properties of Cardiac Cells

- Automaticity
- Excitability
- Conductivity
- Contractility

Conduction System of the Heart

Nervous System Control of Heart

- Autonomic nervous system controls
 - Parasympathetic nervous system
 - Decreases rate of SA node
 - Slows impulse conduction of AV node
 - Sympathetic nervous system
 - Increases rate of SA node
 - Increases impulse conduction of AV node
 - Increases cardiac contractility

Dysrhythmias

- Disorder of impulse formation, conduction of impulses, or both
- SA node normal pacemaker of heart (60–100 beats/minute)
- Secondary pacemakers
 - AV node (40–60 beats/minute)
 - His-Purkinje fibers (20–40 beats/minute)

12-Lead ECG

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Lead Placement

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Patient Preparation

- Clip excessive hair on chest wall
- Rub skin with dry gauze
- May need to use alcohol for oily skin
- Apply electrode pad

Artifact

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Telemetry Monitoring

- Observation of HR and rhythm at a distant site
- Two types
 - Centralized monitoring system
 - Advanced alarm system alerts when it detects dysrhythmias, ischemia, or infarction

Assessment of Cardiac Rhythm

- Interpret the rhythm AND evaluate the clinical status of the patient
- Is the patient hemodynamically stable?
- Determine cause of dysrhythmia
- Treat the patient, not the monitor!

Assessment of Cardiac Rhythm

- **1.** P wave
- 2. Atrial rate and rhythm
- 3. P-R interval
- 4. Ventricular rate and rhythm
- 5. QRS complex
- 6. ST segment
- 7. Q-T interval
- 8. Twave

Normal Sinus Rhythm

- Sinus node fires 60–100 beats/minute
- Follows normal conduction pattern

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Copyright @ 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

- Normal rhythm in aerobically trained athletes and during sleep
- Can occur in response to parasympathetic nerve stimulation and certain drugs
- Also associated with some disease states

- Manifestations
 - Hypotension
 - Pale, cool skin
 - Weakness
 - Angina
 - Dizziness or syncope
 - Confusion or disorientation
 - Shortness of breath

- Treatment
 - Atropine
 - Pacemaker
 - Stop offending drugs

Copyright @ 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

- Caused by vagal inhibition or sympathetic stimulation
- Associated with physiologic and psychologic stressors
- Drugs can increase rate

- Manifestations
 - Dizziness
 - Dyspnea
 - Hypotension
 - Angina in patients with CAD

- Treatment
 - Guided by cause (e.g., treat pain)
 - Vagal maneuver
 - β-adrenergic blockers

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

- Contraction originating from ectopic focus in atrium in location other than SA node
- Travels across atria by abnormal pathway, creating distorted P wave
- May be stopped, delayed, or conducted normally at the AV node

- Causes
 - Stress
 - Fatigue
 - Caffeine
 - Tobacco
 - Alcohol
 - Hypoxia
 - Electrolyte imbalance
 - Disease states

- Manifestations
 - Palpitations
 - Heart "skips a beat"
- Treatment
 - Monitor for more serious dysrhythmias
 - Withhold sources of stimulation
 - β-adrenergic blockers

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

- Reentrant phenomenon: PAC triggers a run of repeated premature beats
- Paroxysmal refers to an abrupt onset and termination
- Associated with overexertion, stress, deep inspiration, stimulants, disease, digitalis toxicity

- Manifestations
 - HR is 150–220 beats/minute (add for clarification)
 - HR > 180 leads to decreased cardiac output and stroke volume
 - Hypotension
 - Dyspnea
 - Angina

- Treatment
 - Vagal stimulation
 - IV adenosine
 - IV β-adrenergic blockers
 - Calcium channel blockers
 - Amiodarone
 - DC cardioversion

Atrial Flutter

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Atrial Flutter

- Typically associated with disease
- Symptoms result from high ventricular rate and loss of atrial "kick" → decreased CO → heart failure
- Increases risk of stroke

Atrial Flutter

Treatment

- Pharmacologic agent
- Electrical cardioversion
- Radiofrequency ablation

Atrial Fibrillation

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Atrial Fibrillation

- Paroxysmal or persistent
- Most common dysrhythmia
- Prevalence increases with age
- Usually occurs in patients with underlying heart disease
- Can also occur with other disease states

Atrial Fibrillation

- Treatment
 - Drugs to control ventricular rate and/or convert to sinus rhythm (amiodarone and ibutilide most common)
 - Electrical cardioversion
 - Anticoagulation
 - Radiofrequency ablation
 - Maze procedure with cryoablation

Junctional Dysrhythmias

- Dysrhythmias that originate in area of AV node
- SA node has failed to fire, or impulse has been blocked at the AV node
- AV node becomes pacer—retrograde transmission of impulse to atria
- Abnormal P wave; normal QRS
- Associated with disease, certain drugs

Junctional Dysrhythmias

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Junctional Dysrhythmia

- Serves as safety mechanism—do not suppress
- If rhythms are rapid, may result in reduction of CO
- Treat if patient is symptomatic
 - Atropine for escape rhythm
 - Correct cause
 - Drugs to reduce rate if tachycardia

First-Degree AV Block

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

First-Degree AV Block

- Associated with disease states and certain drugs
- Typically not serious
- Patients asymptomatic
- No treatment
- Monitor for changes in heart rhythm

Second-Degree AV Block, Type 1 (Mobitz I, Wenckebach)

Copyright @ 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Second-Degree AV Block, Type 1 (Mobitz I, Wenckebach)

- May result from drugs or CAD
- Typically associated with ischemia
- Usually transient and well tolerated
- Treat if symptomatic
 - Atropine
 - Pacemaker
- If asymptomatic, monitor closely

Second-Degree AV Block, Type 2 (Mobitz II)

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Second-Degree AV Block, Type 2 (Mobitz II)

- Associated with heart disease and drug toxicity
- Often progressive and results in decreased CO
- Treat with pacemaker

Third-Degree AV Heart Block (Complete Heart Block)

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Third-Degree AV Heart Block (Complete Heart Block)

- Associated with severe heart disease, some systemic diseases, certain drugs
- Usually results in decreased CO
- Can lead to syncope, HF, shock
- Treat with pacemaker
- Drugs to increase heart rate if needed while awaiting pacing

Premature Ventricular Contractions

Copyright @ 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Premature Ventricular Contractions

- Associated with stimulants, electrolyte imbalances, hypoxia, heart disease
- Not harmful with normal heart but CO reduction, angina, and HF in diseased heart
- Assess apical-radial pulse deficit

Premature Ventricular Contractions

- Treatment
 - Correct cause
 - Antidysrhythmics

Ventricular Tachycardia

Copyright @ 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Ventricular Tachycardia

- Ectopic foci take over as pacemaker
- Monomorphic, polymorphic, sustained, and nonsustained
- Considered life-threatening because of decreased CO and the possibility of deterioration to ventricular fibrillation

Ventricular Tachycardia *Torsades de Pointes*

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Ventricular Tachycardia

- Associated with heart disease, electrolyte imbalances, drugs, CNS disorder
- Can be stable (patient has a pulse) or unstable (pulseless)
- Sustained VT causes severe decrease in CO
 - Hypotension, pulmonary edema, decreased cerebral blood flow, cardiopulmonary arrest

Ventricular Tachycardia

- Precipitating causes must be identified and treated (e.g., hypoxia)
- VT with pulse (stable) treated with antidysrhythmics or cardioversion
- Pulseless VT treated with CPR and rapid defibrillation

Ventricular Fibrillation

Copyright © 2014, 2011, 2007, 2004, 2000, 1996, 1992, 1987, 1983 by Mosby, an imprint of Elsevier Inc.

Ventricular Fibrillation

- Associated with MI, ischemia, disease states, procedures
- Unresponsive, pulseless, and apneic
- If not treated rapidly, death will result
- Treat with immediate CPR and ACLS
 - Defibrillation
 - Drug therapy (epinephrine, vasopressin)

Asystole

- Represents total absence of ventricular electrical activity
- No ventricular contraction
- Patient unresponsive, pulseless, apneic
- Must assess in more than one lead

Asystole

- Usually result of advanced cardiac disease, severe conduction disturbance, or end-stage HF
- Treat with immediate CPR and ACLS measures
 - Epinephrine and/or vasopressin
 - Intubation
- Poor prognosis

Pulseless Electrical Activity

- Electrical activity can be observed on the ECG, but no mechanical activity of the ventricles is evident, and the patient has no pulse
- Prognosis is poor unless underlying cause quickly identified and treated

Pulseless Electrical Activity

Hs and Ts Pneumonic

- Hypovolemia
- Hypoxia
- Hydrogen ion (acidosis)
- Hyper-/hypokalemia
- Hypoglycemia
- Hypothermia

- Toxins
- Tamponade (cardiac)
- Thrombosis (MI and pulmonary)
- Tension pneumothorax

Trauma

Pulseless Electrical Activity

- Treatment
 - CPR followed by intubation and IV epinephrine
 - Treatment is directed toward correction of the underlying cause

